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Dynamical renormalization group calculation of a two-phase sharp interface model
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The temporal evolution of an interface separating two phases is studied using renormalization group and
scaling theory and exact calculation of a sharp interface model incorporating surface tension and kinetic
undercooling. Under conditions favoring rapid solidification the characteristic length,R(t), varies ast1/2 while
the total surface area of the interface,S(t), varies ast (d21)/2. This complements the results of Jasnow and
Vinals who foundR(t);t in the quasistatic regime. The transition in exponents fromR(t);t to R(t);t1/2, as
solidification proceeds from the quasistatic to the rapid solidification regime, suggests a complex evolution
toward a self-similar late stage growth.@S1063-651X~99!50612-0#

PACS number~s!: 47.20.2k, 47.55.2Kf, 68.10.2m
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I. INTRODUCTION

The study of spatial pattern formation arising from no
equilibrium growth has involved several avenues includ
large scale computations, linear perturbation, and analy
methods @1,2#. In many cases, pattern formation aris
through the motion of an interface separating two phase
fluids @2#. The material satisfies a differential equation su
as the heat equation on either side of the interface an
condition on the interface itself@1#. Various features have
been of interest historically: the onset of instability for fl
ids ~Saffman and Taylor@3#!, for alloys ~Mullins and
Sekerka@4#!, and for Stefan-like supercooled solidificatio
@5# have been treated through linear stability methods.

Late stage evolution has been of great interest in dend
growth ~see@6# and references therein!, directional solidifi-
cation in alloys as well as in fluids@2#. In many problems,
this is the key issue~see @7,8# for further references and
discussion!.

A key goal is the development of analytic methodolog
analogous to linear stability theory, that would character
the length scale of self-similar growth. Significant progre
toward this end was made by Jasnow and Vinals@7,8# ~see
references contained therein! who implemented a renorma
ization group approach to study approximations to a o
phase interface problem.

Using a quasistatic approximation, i.e., the heat equa
ut5¹2u is replaced by Laplace’s equation,¹2u50, in one
of the phases, they found that the characteristic length,R(t),
of a self-similar system evolves linearly in time so th
R(t);t. In this paper, we consider the full two-phase a
dynamical problem in arbitrary spatial dimension in a high
supercooled environment so that rapid solidification occu

The main results are that the characteristic length in
system,R(t), evolves ast1/2, and that the capillarity length is
~once again! not relevant to the scaling of the large sca
behavior. The difference in exponents in the two regim
indicates a complex transition between the two.

II. GREEN’S REPRESENTATION OF THE INTERFACE

A. Model and traveling wave solutions

We consider a very fundamental problem that can ea
be generalized to include many physical phenomena.
PRE 601063-651X/99/60~6!/6267~4!/$15.00
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convenience, we utilize thermodynamic terminology. A m
terial occupying a spatial regionV,Rd can be in either of
two phases, which we call liquid~1! and solid~2! phases. A
~sharp! interface problem describing the thermal propert
of this system involves solving for the temperature,T, and
the interface,G(t) in

CvTt5KDT, in V\G, ~2.1!

lvn52K@¹T•n̂#2
1 on G, ~2.2!

T2Teq5
2s

@s#eq
~k1av ! on G. ~2.3!

Here, @¯#2
1 denotes the difference in the limiting value

between the two sides of the interface,Teq is the melting
temperature which we assume, without loss of generality
zero,Cv is specific heat,K is thermal conductivity,l is latent
heat,s is surface tension and@s#eq is the entropy difference
between phases. The variablesk and vn are curvature and
normal velocity at the point on the interface, respectively

A traveling wave solution,$T(t,z,c* % in the ẑ direction
with velocity c* can be written subject to the conditio
T(t,`)5Tcool at z5` as ~see Caginalp and Nishiura@9#!

T0~ t,z!5H Tcool1 l /Cve2@c* ~Cv/K !#~z2c* t ! z.c* t
Tcool1 l /Cv z<c* t,

~2.4!

c* 5
2@s#eq

as
~Tcool1 l /Cv!. ~2.5!

By subtracting out the planar solutionT0(t,z) from the
full solution to Eqs.~2.1!–~2.3! which we denoteT(t,xY ,z)
with xYPRd21 describing the remaining spatial coordinate
we let

w~ t,xY ,z!5T~ t,xY ,z!2T0~ t,z!. ~2.6!

Following Jasnow and Vinals@7,8#, we writez5h(t,xY ) as
the displacement of the interface fromz50 ~i.e., the original
stationary units!. Then dh/dt measures movement in theẑ
R6267 © 1999 The American Physical Society
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direction~with unit vectork̂), so that the normal velocity ca
be written asvn5(dh/dt) k̂•n̂ with n̂ in the direction from
solid to liquid.

Substitution of Eqs.~2.5! and ~2.6! and vn into Eqs.
~2.1!–~2.3! leads to the following system of equations forw:

Cvwt5KDw, ~2.7!

2K@¹w•n̂#2
15 l

d

dt
~h2c* t !k̂•n̂ on G, ~2.8!

w5
2s

@s#eq
H k1a

d

dt
~h2c* t !k̂•n̂J on G, ~2.9!

where Eq.~2.4! for z5c* t has been used in the last equ
tion.

B. Representation using Green’s theorem

We consider Eqs.~2.7!–~2.9! in a domain,D, in Rd which
is infinite in the ẑ direction and large in the remainingd
21 dimensions. We impose periodic boundary conditions
these (d21) dimensions and initial conditionsw(0,xY ,z)
5g(xY ,z). The first two equations,~2.7! and ~2.8!, can be
written as a single equation~Oleinik @10#! by defining locally
a signed distance,r ~defined a sufficiently small distanc
from the interface!, that is positive on the liquid side, and
discontinuous functionw(r ,t) that is11 in the liquid phase
and21 in the solid phase. One has then

Cvwt2KDw5
2 l

2
w t , ~2.10!

wherew depends uponr and t in the form

w~ t,xY ,z!5FS r 2
]

]t
~h2c* t !k̂•n̂D . ~2.11!

Herew is interpreted in the sense of distributions, or equiv
lently, as a limit of functionsw (e)(z)5tanh(z/e) ase→01.

Treating the sharp ‘‘phase’’ functionw, as a source term
in the parabolic differential equation, one can use
Green’s formulation to write, withXY denoting (xY ,z)PRd,

w~XY ,t !5E
0

t

dsE
D

ddyG~XY 2yY ,t2s!S 2 l

2Cv
ws~s,yY ! D ,

1E
D

ddyG~XY 2yY ,t !g~yY !,

with G~yY ,t !ª~4pDt !2d/2e2~4Dt !21uyY u2, DªK/Cv .
~2.12!

Using local coordinates (rY,sY ) that are normal and tangen
tial, to the interface, respectively, one can integrate acr
the interface~i.e., *drY) leaving only the surface area or a
length integral
n

-

e

ss

w~XY ,t !5E
0

t

dsE
G
dsyG~XY 2yY ,t2s!F2 l

Cv
S ]h

]s
2c* D k̂•n̂G

1E
D

G~XY 2yY ,t !g~yY !dy. ~2.13!

For points (XY ,t) on the interface one can substitute Eq.~2.9!
for the left-hand side of Eq.~2.13! and write

s

@s#eq
H k1a

]

]t
~h2c* t !k̂•n̂J

5
l

Cv
E

0

t

dsE
G
dsyG~XY 2yY ,t2s!S ]h

]s
2c* D k̂•n̂

1E
D

G~XY 2yY ,t !g~yY !dyY . ~2.14!

III. RENORMALIZATION GROUP ANALYSIS
OF THE INTERFACE EQUATION

We define the reduced dimensional quantitiesucool
ªTcool/( l /Cv), u0(yY )ªg(yY )/( l /Cv), d0ª(s/@s#eq)/( l /Cr)
and rewrite Eq.~2.14! with jªh2c* t as

d0H k1a
]j

]t
k̂•n̂J 5E

0

t

dsE
G
dsyG~XY 2yY ,t2s!

]j

]s
k̂•n̂

1E
D

G~XY 2yY ,t !u0~yY !dyY ~3.1!

Following Jasnow and Vinals@7,8# we write Eq. ~3.1!
entirely in dimensionless variables by choosingL as a refer-
ence length~e.g., some fixedd0) and lettingd08ªd0 /L and
k85k/(1/L). With T as a reference time scale so thatt8
5t/T and the dimensionless velocities arevn85vn /(L/T),
c* 85c* /(L/T), etc., and the diffusivity in dimensionles
form is

D8ª~K/Cv!/~L2/T!.

Unlike the elliptic Green’s function with dimensions o
(length)22d used by Jasnow and Vinals@7,8#, the~parabolic!
Green’s function has dimensions of (length)2d, and has the
dimensionless counterpart

G8~yY ,t !5G~yY 8,t8!/L2d5~4pD8t8!2d/2e2~4D8t8!21uyY8u2.
~3.2!

Using the dimensionless units, with primes omitted, us
z̄PRd21 for points on the interface, suppressingk̂•n̂ and
omitting the initial condition term~which does not influence
the calculations! we write
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d0H k~zY ,t !1a
d

d t̃
j~zY , t̃ !u t̃ 5tJ

5E
0

t

dsE
G
dd21sG~zY2sY ,t2s!

]

] t̃
j~sY , t̃ !u t̃ 5s .

~3.3!

We implement a renormalization procedure that is sim
to that used by Jasnow and Vinals@7,8#. The first step is to
make an algebraic substitution into Eq.~3.3! of bzY for zY and
b2lt for t, wherebPR1 andlPR are arbitrary,

d0H k~bzY ,b2lt !1a
]j

] t̃
~bzY , t̃ !u t̃ 5b2ltJ

5E
0

b2lt
dsE

G
dd21sG~bzY2sY ,b2lt2s!

]

] t̃
j~sY , t̃ !u t̃ 5s .

~3.4!

Defining new variabless8ªs/b2l andsY 8ªsY /b in order to
rescale time and space, we can rewrite the right-hand sid
Eq. ~3.4! as

E
0

t

b2lds8E
G
bd21dd21s8

5G~bzY2bsY 8,b2lt2b2ls8!
]

] t̃
j~bsY 8, t̃ !u t̃ 5b2ls8 ,

~3.5!

so that Eq.~3.4! now has the form

d0H k~bzY ,b2lt !1
a

b2l

]j

]t
~bzY ,b2lt !J

3E
0

t

b2lds8E
G
bd21dd21s8

3G~bzY2bsY 8,b2lt2b2ls8!

3
1

b2l

]

]s8
j~bsY 8,b2ls8!. ~3.6!

Recalling that the Green’s function,G, @see Eq.~2.12!#
incorporates the diffusivity,D, we write the identity

G„b~zY2sY 8!,b2l~ t2s8!;D…

5b2dG~zY2sY 8,t2s8;D/b21l!. ~3.7!

At this point we assumeself-similarity ~see Jasnow and
Vinals @8#!, i.e.,

j~bsY ,b2lt !5bj~sY ,t !, bk~bsY ,b2lt !5k~sY ,t !.
~3.8!

This is simply the statement that if we rescale the posit
on the interface byb and time byb2l, then the position in
r

of

n

the ẑ direction,j, also changes by a factorb. Similarly, the
sum of principal curvatures,k, has units of 1/~length! and
scales asb21. In other words, ifj(sY ,t) andk(sY ,t) are the
values for the height (ẑ coordinate! and curvature at timet,
then we can obtain the values at timeb2lt by multiplying all
length scales in the problem byb.

Substitution of Eqs.~3.7! and ~3.8! into Eq. ~3.6! yields
the interface equation

d0

b H k~sY ,t !1
a

b2l22

]

]t
j~sY ,t !J

5E
0

t

ds8E
G
dd21s8G~zY2sY 8,t2s8;D/b21l!

3
]j

]s8
~sY 8,s8!. ~3.9!

The second step in the renormalization process is to
cale the physical parameters so that Eq.~3.9! has the same
form as that of the original system, namely, Eq.~3.3!. Thus,
the process of rescaling spatial coordinatesbrY→rY and time,
b2lt→t, as done in Eqs.~3.6!–~3.9!, under the self-
similarity assumption~3.8!, together with the rescalings

d0→d0 /b, a→a/b2l22, D→D/b21l ~3.10!

allows us to transform the interface equation back into
original form.

If the system is described by a characteristic length,R,
then it is also governed by the self-similarity relation of t
form ~3.11!, i.e.,

bR~blt;d0 /b,D/b21l,a/b2l22!5R~ t;d0 ,D,a!.
~3.11!

The scaling equation for the characteristic length, E
~3.11!, then describes the required change in the phys
parameters (d0 ,D,a) under the RG transformation. Sinceb
is arbitrary, we can chooseb5t21/l and rewrite Eq.~3.11! as

R~ t;d0 ,D,a!5t21/lR~1;d0 /t21/l,D/t22/l21,a/t112/l!.
~3.12!

The value ofl clearly determines the large time chara
teristics of the characteristic length,R. The identity ~3.12!
distinguishes the valuel522 since eitherl.22 or l
,22 imply that the argumentsD/t22/l21 anda/t2/l11 on
the right-hand side of Eq.~3.12! either diverge or vanish for
t→`. Each of these is physically irrelevant sincea→0 or
a→` implies the velocity of the plane wave given by Eq
~2.4! and ~2.5! is then infinity or zero.

Hence, the only possibility for a fixed point is forl
522, for which

d0→
d0

t1/2→0, D→D, a→a, ~3.13!

so that any values ofD and a are fixed points whiled0
iterates to zero.

Hence,l522 is the physically relevant exponent so th
Eq. ~3.12! can now be written as
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R~ t;d0 ,D,a!5t1/2R~1;d0 /t1/2,D,a!'t1/2R~1;0,D,a!.
~3.14!

The scaling relation~3.14! for this high undercooling regime
results in a growth rate oft1/2 which differs from theR;t
found for the regime considered by Jasnow and Vinals@7,8#.

IV. CONCLUSIONS

For the fully dynamic rapid solidification regime chara
terized by large undercooling@Tcool,2 l /CV in Eq. ~2.5!#,
one has the key relationR;t1/2, i.e., that the characteristi
length increases as the square root of the time elap
. A
d.

Hence, the exponent int1/2 differs from that found for the
quasistatic problem~Jasnow and Vinals@7,8#!. Similarly, one
calculates the large time total surface area,S(t), of the in-
terface asS;t (d21)/2 that differs from the quasistatic regime
This Green’s function approach also offers the potential
understanding this transition between the two very differ
regimes, and for developing a formation that can interpol
between static and dynamic scaling.
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