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Dynamical renormalization group calculation of a two-phase sharp interface model
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The temporal evolution of an interface separating two phases is studied using renormalization group and
scaling theory and exact calculation of a sharp interface model incorporating surface tension and kinetic
undercooling. Under conditions favoring rapid solidification the characteristic leR@th, varies as/? while
the total surface area of the interfact), varies as(®~V’2. This complements the results of Jasnow and
Vinals who foundR(t) ~t in the quasistatic regime. The transition in exponents fR{t) ~t to R(t)~t*? as
solidification proceeds from the quasistatic to the rapid solidification regime, suggests a complex evolution
toward a self-similar late stage growf{l$1063-651X99)50612-0

PACS numbgs): 47.20—k, 47.55~Kf, 68.10.—m

[. INTRODUCTION convenience, we utilize thermodynamic terminology. A ma-
terial occupying a spatial regioR CRY can be in either of
The study of spatial pattern formation arising from non-two phases, which we call liquidt-) and solid(—) phases. A
equilibrium growth has involved several avenues including(sharp interface problem describing the thermal properties
large scale computations, linear perturbation, and analyticalf this system involves solving for the temperatufe,and
methods[1,2]. In many cases, pattern formation arisesthe interface['(t) in
through the motion of an interface separating two phases or

fluids [2]. The material satisfies a differential equation such C,T{=KAT, in O\I', (2.1
as the heat equation on either side of the interface and a
condition on the interface itse[fl]. Various features have lv,=—K[VT-A]" on T, (2.2

been of interest historically: the onset of instability for flu-
ids (Saffman and Taylor[3]), for alloys (Mullins and
Sekerka[4]), and for Stefan-like supercooled solidification T-T.=——
[5] have been treated through linear stability methods. ¢4 [sleq

Late stage evolution has been of great interest in dendritic
growth (see[6] and references thergindirectional solidifi-  Here, [---]* denotes the difference in the limiting values
cation in alloys as well as in fluidg2]. In many problems, between the two sides of the interfaciy, is the melting
this is the key issudsee[7,8] for further references and temperature which we assume, without loss of generality, is
discussion zero,C, is specific heatK is thermal conductivityl is latent

A key goal is the development of analytic methodology, heat,o is surface tension ar{ts]e is the entropy difference
analogous to linear stability theory, that would characterizehetween phases. The variablesand v,, are curvature and
the length scale of self-similar growth. Significant progressnormal velocity at the point on the interface, respectively.
toward this end was made by Jasnow and Vi8] (see A traveling wave solution{T(t,z,c*} in the z direction
references contained thergwho implemented a renormal- with velocity c* can be written subject to the condition
ization group approach to study approximations to a oneT(t,.) =T, atz=% as(see Caginalp and Nishiuf&])
phase interface problem.

Using a quasistatic approximation, i.e., the heat equation T 41/Coe [ (CKIZ-C*) S~ o*t
u=V?2u is replaced by Laplace’s equatioVi?u=0, in one TO(t,2)= TC°°|+|/CV <c*t
of the phases, they found that the characteristic lerigth),, cool v 2=Ch

— g

(k+av) onT. (2.3

e . A (2.9
of a self-similar system evolves linearly in time so that
R(t)~t. In this paper, we consider the full two-phase and _
. . ; L Lo . [Sleq
dynamical problem in arbitrary spatial dimension in a highly c* = (Teoort1/Cy). (2.5
supercooled environment so that rapid solidification occurs. o

The main results are that the characteristic length in the ) ]
systemR(t), evolves as'2, and that the capillarity length is _ BY subtracting out the planar solutioff(t,z) from the
(once agaih not relevant to the scaling of the large scalefull solution to Egs.(2.1)—(2.3 which we denoteT(t,X,z)

behavior. The difference in exponents in the two regimedVith Xe R describing the remaining spatial coordinates,
indicates a complex transition between the two. we let

Il. GREEN’'S REPRESENTATION OF THE INTERFACE w(t,X,2)=T(t,X,2)—T°(t,2). (2.6

A. Model and traveling wave solutions Following Jasnow and Vinalg,8], we writez=h(t,X) as

We consider a very fundamental problem that can easilghe displacement of the interface frare 0 (i.e., the original
be generalized to include many physical phenomena. Fastationary units Thendh/dt measures movement in tie
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direction(with unit vectorR), so that the normal velocity can % t _J'td jd G(R— t— =1 ah_ * s
be written asv, = (dh/dt)k- A with A in the direction from  WXU= | d8] doyGX=y,t=8) = Zo—c” k-n
solid to liquid.

Substitution of Egs.(2.5) and (2.6) and v, into Egs. f v -
(2.1)—(2.3) leads to the following system of equations far + DG(X y.0g(y)dy. 213

C,w;=KAw, (2.7 ) - _ )
For points ,t) on the interface one can substitute E2}9)
for the left-hand side of Eq2.13 and write

d .
—K[Vw~ﬁ]f=la(h—c*t)k-ﬁ onT, (2.9

7 [ ralin *t)R‘]
Ly d ) [Sleq " “ ot
= — — _— * 'A
w [Te K+adt(h c*t)k-ny on I, (2.9 |
t N A
= —_— —Vv.it— ——c* N
where Eq.(2.4) for z=c*t has been used in the last equa- C, fodsfrdayG(X yit S)( Js ¢ )k :

tion.

+ | s-y.09may (2.1

B. Representation using Green’s theorem D

We consider Eqg2.7)—(2.9) in a domain;D, in RY which
is infinite in the z direction and large in the remaining
—1 dimensions. We impose periodic boundary conditions in
these (l—1) dimensions and initial condition®/(0X,z)
=g(X,z). The first two equations(2.7) and (2.8), can be We define the reduced dimensional quantitieg,
written as a single equatid®leinik [10]) by defining locally =T,/ (1/C,), Ug(Y):=9(y)/(I/C,), dg:=(0/[S]ex)/(I/C;)
a signed distancer;, (defined a sufficiently small distance and rewrite Eq(2.14) with £&:=h—c*t as
from the interfacg that is positive on the liquid side, and a
discontinuous functiorp(r,t) that is+1 in the liquid phase
and—1 in the solid phase. One has then do

Ill. RENORMALIZATION GROUP ANALYSIS
OF THE INTERFACE EQUATION

ﬁgkA—ftdfd G(X-y e

K+a§ Ny = o S . gy ( y.t S)% -n
—1

C,W,—KAwW=— ¢y, (2.10 - e

v 2 +fDG(X—y,t)uo(y)dy (3.

where ¢ depends upon andt in the form

Following Jasnow and Vinal§7,8] we write Eq. (3.1
entirely in dimensionless variables by choosii@s a refer-
ence lengthle.g., some fixedl,) and lettingdy:=dy/L and
k'=«kl(1/L). With T as a reference time scale so that
Here ¢ is interpreted in the sense of distributions, or equiva-=t/7 and the dimensionless velocities arg=v,/(L/7),
lently, as a limit of functionsy(®(z) =tanh@e) ase—0+. c*'=c*/(LI7), etc., and the diffusivity in dimensionless

Treating the sharp “phase” functiop, as a source term form is
in the parabolic differential equation, one can use the

o(t,X,2)=F r—%(h—c*t)ﬁ-ﬁ . (2.11)

Green'’s formulation to write, with denoting &,z) € RY, D' =(K/C)/(L2T).
- t - —1
w(x,t):f dsf ddyG(x_y,t_s)(—%(s,y)), Unlike the elliptic Green’s function with dimensions of
0 D 2C, (lengthY 9 used by Jasnow and Vindlg,8], the (paraboli¢

o Green’s function has dimensions of (lengtf) and has the
+ fDddyG(X—y,t)g(V), dimensionless counterpart

G'(V,1)=G(y' .t")/ L 9=(4mD't’) 92 (4D"t) '?,

. N _ _ -11512
with G(y,t):=(47Dt)" %2~V " p.=K/C,. 32

(2.12

Using local coordinates’(¢) that are normal and tangen- __ Using the dimensionless units, with primes omitted, using
tial, to the interface, respectively, one can integrate acrosgée R9~! for points on the interface, suppressikgn and
the interface(i.e., [dF) leaving only the surface area or arc omitting the initial condition termiwhich does not influence
length integral the calculationswe write
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~ d _._ the z direction, &, also changes by a factbr Similarly, the
do[ K(§,t)+a—~§(§,t)|?=t} sum of principal curvaturesy, has units of Ilength and
dt scales ad 1. In other words, if¢(a,t) and x(a,t) are the
. P values for the heightZ coordinate and curvature at timg
= f dsf d41oG({—a,t—s) — &G, 1. then we can obtain the values at tilme*t by multiplying all

0 r at length scales in the problem Iy
Substitution of Eqs(3.7) and (3.8) into Eq. (3.6) yields

33 the interface equation

We implement a renormalization procedure that is similar « 9
to that used by Jasnow and Vindlg8]. The first step is to _O[ k(a,t)+ b=z —§(&,t)]
make an algebraic substitution into E§.3) of b for ¢ and o

b~ for t, wherebe R™ and\ € R are arbitrary, t R
=f ds’f d4 o' G({—¢d',t—s";D/b>*H)
0 r

NN dE .
doj k(b{,b™ ) +a— (b Dli-p-x Py
ot RISV
X&S, (a',s"). (3.9
bt d-1 PR, d nv : ot ;
= ds| d® *oG(b{—a,b  *—s)—=¢&(a,t)]7=s. The second step in the renormalization process is to res-
0 r at cale the physical parameters so that 219 has the same

(3.4) form as that of the original system, namely, E8.3). Thus,
the process of rescaling spatial coordindi€s-1 and time,
Defining new variables’:=s/b™» andé':=¢/b in orderto b *t—t, as done in Egs.(3.6—(3.9, under the self-
rescale time and space, we can rewrite the right-hand side sfmilarity assumption(3.8), together with the rescalings
Eq. (3.4 as
do—do/b, a—al/b™"2, D—D/b?>** (3.10

t
f b‘*ds’f bd~1d4"1g allows us to transform the interface equation back into the
0 r original form.
9 If the system is described by a characteristic lenggh,
=G(b{—bs’ b —b*s") —&bs' ;i p-ry, thenitis also governed by the self-similarity relation of the
It form (3.11), i.e.,
(3.9 bR(b*;do/b,D/b?" a/b™*"2)=R(t;dy,D,a).

so that Eq«(3.4) now has the form .19

The scaling equation for the characteristic length, Eq.

do: K(bg,b_)\t)‘f‘%&—g(bg,b_)\t)’ (3.1, then describes the required change in the physical
b™* at parametersd,,D,a) under the RG transformation. Sinbe
is arbitrary, we can choode=t~** and rewrite Eq(3.11) as

t
X bi}\dS,J» bdflddfl ’
fo r 7 R(t;dg,D,a)=t ™ R(1;dg/t ™ D/t=2" "1 a/tt ™M),
- (3.12
XG(bl{—ba' b M—b*s")
5 The value of\ clearly determines the large time charac-
=/ h-Ael teristics of the characteristic lengtR, The identity (3.12
X— — '), . T . .
b= gs’ §(ba’,b™7s") 3.6 distinguishes the valua =—2 since eitherA>—2 or X\

< —2 imply that the argument®/t~?*~* and a/t?*** on

Recalling that the Green’s functiois, [see EQ.(2.12]  the right-hand side of Eq3.12) either diverge or vanish for

incorporates the diffusivityD, we write the identity t—oo. Each of these is physically irrelevant sinae-0 or
. N a— implies the velocity of the plane wave given by Egs.
G(b({—a"),b " t—s");D) (2.4) and(2.5) is then infinity or zero.
_ =, , Hence, the only possibility for a fixed point is for
=b dG(é’_O' t—s ;D/b2+)\). (37) = —2. for which
At this point we assumself-similarity (see Jasnow and d
Vinals[8]), i.e., do_’t_lon_’O’ D—D, a—a, (3.13

&ba,b M)=Dbé&(a,t), bx(bab M)=«k(a,t). _ _ _
(3.9  so that any values ob and a are fixed points whiledg

iterates to zero.
This is simply the statement that if we rescale the position Hence\ = —2 is the physically relevant exponent so that
on the interface by and time byb™*, then the position in  Eq. (3.12 can now be written as
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R(t;dg,D,a)=tYR(1;dy/t*2D,a)~t?R(1;0D,a). Hence, the exponent it? differs from that found for the

(3.19 guasistatic probleriJasnow and Vinalg7,8]). Similarly, one
calculates the large time total surface argg), of the in-
terface asS~t(4~ "2 that differs from the quasistatic regime.
This Green'’s function approach also offers the potential for
understanding this transition between the two very different
regimes, and for developing a formation that can interpolate
IV. CONCLUSIONS between static and dynamic scaling.

For the fully dynamic rapid solidification regime charac-
terized by large undercoolinfl;,o<—1/Cy in Eq. (2.9)],
one has the key relatioR~t*?, i.e., that the characteristic
length increases as the square root of the time elapsed. G.C. was supported by NSF Grant No. DMS-9703530.

The scaling relatiori3.14) for this high undercooling regime
results in a growth rate af¥? which differs from theR~t
found for the regime considered by Jasnow and Viha)§|.
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